Abstract
This thesis is concerned with numerical methods for Mixed-Integer Optimal Control Problems with Combinatorial Constraints. We establish an approximation theorem relating a Mixed-Integer Optimal Control Problem with Combinatorial Constraints to a continuous relaxed convexified Optimal Control Problems with Vanishing Constraints that provides the basis for numerical computations. We develop a a Vanishing- Constraint respecting rounding algorithm to exploit this correspondence computationally. Direct Discretization of the Optimal Control Problem with Vanishing Constraints yield a subclass of Mathematical Programs with Equilibrium Constraints. Mathematical Programs with Equilibrium Constraint constitute a class of challenging problems due to their inherent non-convexity and non-smoothness. We develop an active-set algorithm for Mathematical Programs with Equilibrium Constraints and prove global convergence to Bouligand stationary points of this algorithm under suitable technical conditions. For efficient computation of Newton-type steps of Optimal Control Problems, we establish the Generalized Lanczos Method for trust region problems in a Hilbert space context. To ensure real-time feasibility in Online Optimal Control Applications with tracking-type Lagrangian objective, we develop a Gaus-Newton preconditioner for the iterative solution method of the trust region problem. We implement the proposed methods and demonstrate their applicability and efficacy on several benchmark problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have