Abstract
We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching close to the zero-mass ultrarelativistic regime treated in the previous literature. Starting from an expansion of the Maxwell-Jüttner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through numerical comparison with standard tests and solvers in relativistic fluid dynamics such as Boltzmann approach multiparton scattering and previous relativistic lattice Boltzmann models. This work provides a significant step towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless particles regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.