Abstract
In this paper, we investigate the recently developed lattice Boltzmann model for relativistic hydrodynamics. To this purpose, we perform simulations of shock waves in quark-gluon plasma in the low and high viscosities regime, using three different computational models, the relativistic lattice Boltzmann (RLB), the Boltzmann Approach Multi-Parton Scattering (BAMPS), and the viscous sharp and smooth transport algorithm (vSHASTA). From the results, we conclude that the RLB model departs from BAMPS in the case of high speeds and high temperature(viscosities), the departure being due to the fact that the RLB is based on a quadratic approximation of the Maxwell-J\"uttner distribution, which is only valid for sufficiently low temperature and velocity. Furthermore, we have investigated the influence of the lattice speed on the results, and shown that inclusion of quadratic terms in the equilibrium distribution improves the stability of the method within its domain of applicability. Finally, we assess the viability of the RLB model in the various parameter regimes relevant to ultra-relativistic fluid dynamics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have