Abstract
With the advancement of internet technology, customers increasingly rely on online reviews as a valuable source of information. The study aims to develop a marketing data analytics framework to manage online reviews, especially fake reviews, which have become a significant issue undermining the creditability of online review systems. As small and medium-sized enterprises often lack the capabilities to automatically derive customer insights from online reviews, this study proposes a cost-effective, extensible Review-Analytics-as-a-Service (RAaaS) framework that can be operated by non-data specialists to facilitate online review data analytics. We demonstrate the framework’s application by using two datasets with more than 400,000 online reviews from Yelp to simulate live platforms and demonstrate an analytic flow of review fraud detection and understanding. The findings reveal insights into the influence of fake reviews on product ranking and exposure rate. Moreover, it was found that there was a higher concentration of sadness and anger in fake reviews (vs. organic reviews). In addition, fake reviews tend to be shorter, more extreme (with the use of strong adverbs), and have different patterns of topic distribution. This study has important implications for different stakeholder groups including, but not limited to, SMEs, review platforms and customers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.