Abstract

Emerging applications for nanoscale materials demand precise deposit shape retention from design to deposition. This study investigates the effects that disrupt high-fidelity shapes during focused electron beam induced nanosynthesis. It is shown that process parameters, patterning strategies and deposit topography can impose lateral precursor coverage gradients during growth resulting in unwanted topographic artifacts. The study classifies the evolving surface shapes into four general types and explains the formation and transition from a fundamental point of view. Continuum model calculations and simulations expand the experimental results to provide a comprehensive insight into understand the disruption mechanism. The findings demonstrate that the well-established concept of growth regimes has to be expanded by its lateral gradients as they strongly influence final shape fidelities. Finally, the study is complemented by a compensation strategy that improves the edge fidelity on the lower nanoscale to further push this technique toward the intrinsic limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.