Abstract

The vacancy defect behavior in silicon crystal growth has been investigated by kinetic Monte Carlo and continuum simulations. The vacancy concentration distributions in silicon crystal were obtained from continuum model simulations corresponding to experimental conditions and then the vacancy clusters distribution obtained from kinetic lattice Monte Carlo simulations. At the temperature above 1470 K, the diffusivity was almost constant because the clusters were not formed. In the clustering temperature region (1370–1270 K), the larger clusters were generated at the higher temperature, the smaller clusters were generated at the lower temperature. While the vacancy concentration led to increase in the number of clusters, the mean size of clusters was irrespective of the vacancy concentrations. Clustering phenomena were very susceptible to temperature and vacancy concentrations. The total number of vacancy clusters was linearly proportion to the crystal pull rate. The radial distribution of clusters obtained from multi-scale simulations was in good agreement with the distribution of voids in the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call