Abstract

Retinal microsurgery requires steady and precise manipulation of delicate eye tissues in a very small space. Physiological hand tremor and lack of force sensing are among the main technical challenges, limiting surgical performance. We present a system that consists of the cooperatively controlled Steady-Hand Eye Robot and a miniaturized 3-DOF force sensing instrument to address these limitations. While the robot can effectively suppress hand tremor, enable steady and precise tissue manipulation, the force sensing instrument can provide three dimensional force measurements at the tool tip with submillinewton resolution. Auditory sensory substitution is used to give the user real time force information. Evaluation experiments are conducted using artificial and biological membrane peeling phantoms. Experimental results show that the robotic assistance and force-to-audio sensory substitution can effectively control the magnitude of the tool-to-tissue force. The direction profiles of the membrane peeling forces reflect the different delaminating strategies for different membrane phantoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.