Abstract
This study introduces a novel framework for the robotic decommissioning of nuclear facilities, that focuses on object classification and six degrees of freedom pose estimation from partial-view three-dimensional (3-D) scan data. Addressing the challenge of precise robotic manipulation in environments where acquiring full-scan data is impractical, this framework leverages a deep neural network for initial pose estimation, subsequently refined by a modified iterative closest point algorithm. Our method demonstrates high accuracy in identifying scanned objects and estimating their poses from partial-view scans, validated through experiments with 3-D printed mock-ups. This advancement highlights the potential for significantly enhancing robotic automation in nuclear decommissioning and related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.