Abstract

Carrier multiplication (CM) is an interesting fundamental phenomenon with application potential in optoelectronics and photovoltaics, and it has been shown to be promoted by quantum confinement effects in nanostructures. However, mostly due to the short lifetimes of additional electron–hole (e-h) pairs generated by CM, major improvements of quantum dot devices that exploit CM are limited. Here we investigate CM in SiO2 solid state dispersions of phosphorus and boron codoped Si nanocrystals (NCs): an exotic variant of Si NCs whose photoluminescence (PL) emission energy, the optical bandgap, is significantly red-shifted in comparison to undoped Si NCs. By combining the results obtained by ultrafast induced absorption (IA) with PL quantum yield (PL QY) measurements, we demonstrate CM with a long (around 100 μs) lifetime of the additional e-h pairs created by the process, similar as previously reported for undoped Si NCs, but with a significantly lower CM threshold energy. This constitutes a significant step toward the practical implementation of Si-based NCs in optoelectronic devices: we demonstrate efficient CM at the energy bandgap optimal for photovoltaic conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.