Abstract

Carrier multiplication (CM) is the amplification of the excited carrier density by two times or more when the incident photon energy is larger than twice the bandgap of semiconductors. A practical approach to demonstrate the CM involves the direct measurement of photocurrent in the device. Specifically, photocurrent measurement in quantum dots (QDs) is typically limited by high contact resistance and long carrier-transfer length, which yields a low CM conversion efficiency and high CM threshold energy. Here, the local photocurrent is measured to evaluate the CM quantum efficiency from a QD-attached Au tip of a conductive atomic force microscope (CAFM) system. The photocurrent is efficiently measured between the PbS QDs anchored on a Au tip and a graphene layer on a SiO2 /Si substrate as a counter electrode, yielding an extremely short channel length that reduces the contact resistance. The quantum efficiency extracted from the local photocurrent data with an incident photon energy exhibits a step-like behavior. More importantly, the CM threshold energy is as low as twice the bandgap, which is the lowest threshold energy of optically observed QDs to date. This enables the CAFM-based photocurrent technique to directly evaluate the CM conversion efficiency in low-dimensional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.