Abstract
This paper presents an effort to enable robots to utilize open-source knowledge resources autonomously for human-robot interaction. The main challenges include how to extract knowledge in semi-structured and unstructured natural languages, how to make use of multiple types of knowledge in decision making, and how to identify the knowledge that is missing. A set of techniques for multi-mode natural language processing, integrated decision making, and open knowledge searching is proposed. The OK-KeJia robot prototype is implemented and evaluated, with special attention to two tests on 11,615 user tasks and 467 user desires. The experiments show that the overall performance improves remarkably due to the use of appropriate open knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.