Abstract

The plasmodium of slime mould Physarum polycephalum has recently received significant attention for its value as a highly malleable amorphous computing substrate. In laboratory-based experiments, nanoscale artificial circuit components were introduced into the P. polycephalum plasmdodium to investigate the electrical properties and computational abilities of hybridized slime mould. It was found through a combination of imaging techniques and electrophysiological measurements that P. polycephalum is able to internalize a range of electrically active nanoparticles (NPs), assemble them in vivo and distribute them around the plasmodium. Hybridized plasmodium is able to form biomorphic mineralized networks inside the living plasmodium and the empty trails left following its migration, both of which facilitate the transmission of electricity. Hybridization also alters the bioelectrical activity of the plasmodium and likely influences its information processing capabilities. It was concluded that hybridized slime mould is a suitable substrate for producing functional unconventional computing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.