Abstract

Studying networked systems in a variety of domains, including biology, social science, and Internet of Things, has recently received a surge of attention. For a networked system, there are usually multiple types of interactions between its components, and such interaction-type information is crucial since it always associated with important features. However, some interaction types that actually exist in the network may not be observed in the metadata collected in practice. This article proposes an approach aiming to detect previously undiscovered interaction types (PUITs) in networked systems. The first step in our proposed PUIT detection approach is to answer the following fundamental question: is it possible to effectively detect PUITs without utilizing metadata other than the existing incomplete interaction-type information and the connection information of the system? Here, we first propose a temporal network model which can be used to mimic any real network and then discover that some special networks which fit the model shall a common topological property. Supported by this discovery, we finally develop a PUIT detection method for networks which fit the proposed model. Both analytical and numerical results show this detection method is more effective than the baseline method, demonstrating that effectively detecting PUITs in networks is achievable. More studies on PUIT detection are of significance and in great need since this approach should be as essential as the previously undiscovered node-type detection which has gained great success in the field of biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call