Abstract
Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, limited description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element model of the head. The vibration modes were characterized using 2D plate deformation notation in the basic medical planes. Many of the vibration modes characterized are similar to those found in previous numerical and experimental studies. We propose this characterization method as an approach to increase compatibility of results between studies of brain vibration behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have