Abstract

The existing models of switch-toughening seldom consider the effect of non-uniform ferro-elastic domain switching in the vicinity of a crack. To explore this issue, an evolution law for the volume fraction of the switched portion under applied electromechanical loading is established from the minimum energy principle. Based on this law, a switching model capable of dealing with the non-uniform distribution of switching strain is developed. The domain switching zone is divided into a saturated inner core and an active surrounding annulus. Mono-domain solution of ferro-elastic toughening is obtained under the model of small scale domain switching. Toughening for ferroelectrics with different poling states is estimated via Reuss type approximation. Two sets of solutions are obtained according to spherical and cylindrical inclusions. The interval of toughening defined by these two models covers the range of experimental data. The same conclusion is reached for the size of the switching zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.