Abstract

Abstract In this paper, a finite element program in conjunction with domain switching criterion was developed to analyze domain wall switching and its effect on the near tip stress field in piezoelectric materials containing a crack. Domain switching zones in the vicinity of the crack tip corresponding to various combined electric and mechanical loads were obtained. It is found that the size, shape and mode (90° or 180° switching) of domain switching zone near the crack tip depend on the direction as well as magnitude of the applied electric field. For a positive electric field (same as the poling direction), 90° domain switching occurs behind the crack tip, and the zone increases as the applied positive electric field increases. If the applied electric field is negative, then a 180° domain switching zone appears ahead of the crack tip while a 90° domain switching zone exists behind the tip. Moreover, the stress field near the crack tip is found to be significantly affected by the domain switching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.