Abstract
In this study, lightning strike damage of woven carbon fibre-reinforced polymer laminates (W-CFRPs) and woven composite honeycomb sandwich panels (W-CHSPs) are simulated using the proposed sequential thermal-electrical–mechanical finite element (FE) coupling model incorporating dielectric breakdown of materials. Surface current with an amplitude of 200 kA and corresponding lightning shockwave overpressure were applied on each composite. The FE model coupled with LaRC05 criterion was used to study the failure behaviours of intralaminar damage and interlaminar delamination of the W-CFRPs and W-CHSPs. A series of lightning strike tests were performed to validate the FE model. Detailed lightning damage assessments and mechanisms were characterized by a combination of visual inspection, image processing, ultrasonic scanning and micro computed tomography (Micro-CT) and showed good agreements with the FE-predicted results. It can be concluded that shockwave overpressure significantly impacts lightning-induced damages, thereby supporting the effectiveness of the newly proposed sequential thermal-electrical–mechanical coupling model, which demonstrates improved predictive accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.