Abstract

ABSTRACTFor arbitrary Reynolds number Re, aFNS theory O(1; δ2; δ3) significance scaled state variable achieves analytical closure of rigorously space filtered thermal, multi-species Navier–Stokes (NS) conservation principle partial differential equation (PDE) system well-posed on bounded domains (Part I). Validation of boundary commutation error (BCE) and nonhomogeneous Dirichlet boundary condition (DBC) resolution strategies results in ADh-GWSh-BCEh-DBCh algorithm coupling with aFNS theory optimal Galerkin GWSh + θTS CFD algorithm (Part II), including accuracy/convergence assessments. For Reynolds numbers ranging E+02 <Re < 2E+04, aFNS theory fully coupled k = 1 basis Galerkin CFD code generated a posteriori data enable theory quantitative validation. For assured laminar Re range, NS no-slip BC reduced and coupled aFNS theory code predicted quasi-steady thermal-velocity transition to periodic unsteady is validated via linear stability predicted critical Re. For Re exceeding assured laminar, theory coupled CFD data quantify spatial filtering annihilation of (laminar) NS predicted large wave number spectral content. For sufficiently large Re, coupled CFD code a posteriori data document first principles prediction of unsteady periodic wall attached velocity profile transitioning-from-laminar, then separation, fully turbulent profile reattachment followed by relaminarization. These large Re CFD data as well enable validation of perturbation theory O(1; δ2; δ3) significance scaled state variable, ADh-GWSh-DBCh algorithm prediction of O(δ2) state variable non-homogeneous Dirichlet BC DOF data and in concert thoroughly quantify theory generated O(δ2; δ3) state variable distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.