Abstract

In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (I−P)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (I−P)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.