Abstract
Microcystins (MCs) are cyanobacterial toxins encountered in aquatic environments worldwide. Over 100 MC variants have been identified and have the capacity to covalently bind to animal tissue. This study presents a new approach for cell-bound and free microcystin analysis in fish tissue using sodium hydroxide as a digestion agent and Lemieux oxidation to obtain the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) moiety, common to all microcystin congeners. The use of laser diode thermal desorption-atmospheric pressure chemical ionization coupled with Q-Exactive mass spectrometry (LDTD-APCI-HRMS) led to an analysis time of approximately 10 s per sample and high-resolution detection. Digestion/oxidation and solid phase extraction recoveries ranged from 70 to 75% and from 86 to 103%, respectively. Method detection and quantification limits values were 2.7 and 8.2 μg kg(-1), respectively. Fish samples from cyanobacteria-contaminated lakes were analyzed, and concentrations ranging from 2.9 to 13.2 μg kg(-1) were reported.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have