Abstract

In this study, the distribution of the anti-epileptic drug carbamazepine (CBZ) in wastewater (WW) and aqueous and solid phases of wastewater sludge (WWS) was carried out. A rapid and reliable method enabling high-throughput sample analysis for quicker data generation, detection, and monitoring of CBZ in WW and WWS was developed and validated. The ultrafast method (15s per sample) is based on the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). The optimization of instrumental parameters and method application for environmental analysis are presented. The performance of the novel method was evaluated by estimation of extraction recovery, linearity, precision and detection limit. The method detection limits was 12ngL−1 in WW and 3.4ngg−1 in WWS. The intra- and inter-day precisions were 8% and 11% in WW and 6% and 9% in WWS, respectively. Furthermore, three extraction methods, ultrasonic extraction (USE), microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) with three different solvent condition such as methanol, acetone and acetonitrile:ethyle acetate (5:1, v/v) were compared on the basis of procedural blank and method recovery. Overall, ASE showed the best extraction efficiency with methanol as compared to USE and MAE. Furthermore, the quantification of CBZ in WW and WWS samples showed the presence of contaminant in all stages of the treatment plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.