Abstract

We propose a method for structural optimization that relies on two alternative descriptions of shapes: on the one hand, they are exactly meshed so that mechanical evaluations by finite elements are accurate; on the other hand, we resort to a level-set characterization to describe their deformation along the shape gradient. The key ingredient is a meshing algorithm for building a mesh, suitable for numerical computations, out of a piecewise linear level-set function on an unstructured mesh. Therefore, our approach is at the same time a geometric optimization method (since shapes are exactly meshed) and a topology optimization method (since the topology of successive shapes can change thanks to the power of the level-set method).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.