Abstract

Local quantum phase transitions driven by Kondo correlations have been theoretically proposed in several magnetic nanosystems; however, clear experimental signatures are scant. Modeling a nickelocene molecule on a Cu(100) substrate as a two-orbital Anderson impurity with single-ion anisotropy coupled to two conduction bands, we find that recent scanning tunneling spectra reveal the existence of a topological quantum phase transition from the usual local Fermi liquid with high zero-bias conductance to a non-Landau Fermi liquid, characterized by a non-trivial quantized Luttinger integral, with a small conductance. The effects of intermediate valence, finite temperature, and structural relaxation of the molecule position allow us to explain the different observed behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call