Abstract

Topological properties of a periodic condensed matter system are global features of its Brillouin zone (BZ). In contrast, the validity of effective low energy theories is usually limited to the vicinity of a high symmetry point in the BZ. We derive a general criterion under which the control parameter of a topological phase transition localizes the topological defect in an arbitrarily small neighbourhood of a single point in k-space upon approaching its critical value. Such a local phase transition is associated with a Dirac-like gap closing point, whereas a flat band transition is not localized in k-space. This mechanism and its limitations are illustrated with the help of experimentally relevant examples such as HgTe/CdTe quantum wells and bilayer graphene nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call