Abstract
Effect of solutes of transition metals (TM = Cr, Fe, Hf, Mn, Mo, Nb, Ni, Pt, Rh, Ru, Re, Ta, Ti, V, W, Y and Zr) on the local phase transition between the L12 and D019 structures in superlattice intrinsic stacking fault (SISF) of Co3TM has been investigated. All the models employed herein, i.e. (1) the SISF-containing supercell, (2) the axial nearest-neighbor Ising (ANNI) model, and (3) both the L12- and D019-containing (L12 + D019) supercell, yield the same result regarding the stability of SISF in L12-type Co3TM. In the view of bonding charge density, the atomic and electronic basis of local D019 phase transition in the SISF fault layers of Co3TM are revealed. Especially, the negative SISF energy predicted by the L12 + D019 model suggests that both the SISF fault layers (i.e. the local D019 structure) and the L12 phase of Co3TM can be stabilized through a coupling interaction between the fault layers and the solutes, paving a pathway to stabilize Co-base superalloys via Co3TM precipitate. Moreover, the consist results of ESISF via the ANNI model with the classical SISF-supercell method utilized in first-principles calculations supports the approach to efficiently distinguish various planar faults and predict their corresponding energies, such as SISF, superlattice intrinsic stacking fault, anti-phase boundaries, and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.