Abstract
The three-dimensional incompressible Navier-Stokes equations are considered along with its weak global attractor, which is the smallest weakly compact set which attracts all bounded sets in the weak topology of the phase space of the system (the space of square-integrable vector fields with divergence zero and appropriate periodic or no-slip boundary conditions). A number of topological properties are obtained for certain regular parts of the weak global attractor. Essentially two regular parts are considered, namely one made of points such that all weak solutions passing through it at a given initial time are strong solutions on a neighborhood of that initial time, and one made of points such that at least one weak solution passing through it at a given initial time is a strong solution on a neighborhood of that initial time. Similar topological results are obtained for the family of all trajectories in the weak global attractor.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have