Abstract

Micro-machining applications have been extended from electronics to micro-scale medical implants and devices. Micro-milling among the micro-machining processes, has the potential to be the most cost effective and efficient material removal process due to ease of use and accessibility of the tools. Complex challenges are faced due to size effect, vibrations, and other uncontrollable factors coupled with a material like Titanium used in several aerospace and medical applications which is also a representative as difficult to machine material. This study analyzes tool edge wear on micro-end-milling of commercially pure Titanium (ASTM SB 265 GR2) applying design of experiment aided with response surface methodologies to find a proper set of cutting parameters. The results show that it is possible to achieve reduced tool wear while material removal rate is balanced simultaneously. Performance charts are developed to assist in appropriate selection of cutting parameters in Titanium micro-milling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call