Abstract

Electrochemical discharge micro-machining (micro-ECDM) process appears to be very promising as a future micro-machining technique, since in many areas of applications it offers several advantages, which include machining of variety of electrically non-conducting hard, brittle materials including glass, ceramics and composites etc. It is an advanced hybrid micro-machining process that combines the techniques of electrochemical machining (ECM) and electrodischarge machining (EDM). This book chapter focuses on the current researches and developments in micro-ECDM process . The chapter discusses in details about the micro-ECDM system, which includes the mechanical hardware unit, electrolyte supply unit and electrical power supply unit etc. The effects of various factors on different machining performance characteristics such as material removal rate, accuracy, heat affected zone, gas film quality, machining depth, surface topography and tool wear etc. during its application mainly for micro-drilling and micro-cutting operations on engineering materials are represented in this chapter. The chapter also gives a glimpse on the fundamentals, problematic areas and applications of micro-ECDM process and highlights the challenges and future possibilities of research in this area. The recent advancements for improvement of performance of µ-ECDM process by using the rotating and travelling micro-tool, controlling the gap between the tool and the workpiece, changing the shape of micro-tool and also controlling the surface texture and material of tool for micro-spark discharge for required micro-machining operations are also depicted in this chapter. The chapter is expected to open up new insights into the process characteristics for successful application of electrochemical discharge micro-machining (micro-ECDM) process and provides valuable guidance to the applied researchers and manufacturing scientists for setting up unique platform for micro-machining electrically non-conducting engineering materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call