Abstract
In this digitized world, the Internet has become a prominent source to glean various kinds of information. In today’s scenario, people prefer virtual reality instead of one to one communication. The Majority of the population prefers social networking sites to voice themselves through posts, blogs, comments, likes, dislikes. Their sentiments can be found/traced using opinion mining or Sentiment analysis. Sentiment analysis of social media text is a useful technique for identifying peoples’ positive, negative or neutral emotions/sentiments/opinions. Sentiment analysis has gained special attention by researchers from last few years. Traditionally many machine learning algorithms were used to implement it like navie bays, Support Vector Machine and many more. But to overcome the drawbacks of ML in terms of complex classification algorithms different deep learning-based algorithms are introduced like CNN, RNN, and HNN. In this paper, we have studied different deep learning algorithms and intended to propose a deep learning-based model to analyze the behavior of an individual using social media text. Results given by the proposed model can utilize in a range of different fields like business, education, industry, politics, psychology, security, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.