Abstract
Cloud Computing (CC) involves extensive data centers with numerous computing nodes that consume significant electrical energy. Researchers have identified high service-level agreement (SLA) violations and excessive energy consumption (EC) as major challenges in CC. Traditional approaches often focus on reducing EC but tend to overlook SLA violations, particularly when selecting Virtual Machines (VMs) from overloaded hosts. To address these issues, this paper introduces the Enhanced Ant Colony Optimization (EACO) algorithm, aims to reduce high EC and SLA violations by utilizing a unique approach where the best-performing ant explores movement patterns and identifies distances between movements. The algorithm comprises three key steps: tracking pheromone trails, updating pheromones and selecting the cities (VMs). The effectiveness of EACO was validated through simulations using CloudSim. Compared to existing techniques, EACO demonstrated a significant reduction in EC, achieving approximately 41-44% lower energy consumption than the traditional Ant Colony Optimization (ACO) algorithm when applied to Planet Lab data. This suggests that EACO offers a more efficient and stable solution for managing EC and SLA violations in cloud environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.