Abstract
Since the two last decades, social media networks have become a part of our daily life. Today, getting information from social media, tracking trends in social media, learning the feelings and emotions of people on social media is very essential. In this study, sentiment analysis was performed on Twitter text to learn about the subjective polarities of the writings. The polarities are positive, negative, and neutral. At the first stage of the sentiment analysis, a public data set has been obtained. Secondly, natural language processing techniques have been applied to make the data ready for machine learning training procedures. Lastly, sentiment analysis is performed by using three different machine learning algorithms. We reached 89% accuracy with Support Vector Machines, 88% accuracy with Random Forest, and 72% accuracy with Gaussian Naive Bayes classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Academic Platform Journal of Engineering and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.