Abstract

Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in Caenorhabditis elegans and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated fzo-1:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type C. elegans and subsequent crossbreeding with the fzo-1:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.