Abstract
Transport of cholesterol into the mitochondria is the rate-determining, hormone-sensitive step in steroid biosynthesis. Here we report that the mechanism underlying mitochondrial cholesterol transport involves the formation of a macromolecular signaling complex composed of the outer mitochondrial membrane translocator protein (TSPO), previously known as peripheral-type benzodiazepine receptor; the TSPO-associated protein PAP7, which binds and brings to mitochondria the regulatory subunit RIalpha of the cAMP-dependent protein kinase (PKARIalpha); and the hormone-induced PKA substrate, steroidogenic acute regulatory protein (StAR). Hormone treatment of MA-10 Leydig cells induced the co-localization of TSPO, PAP7, PKARIalpha, and StAR in mitochondria, visualized by confocal microscopy, and the formation in living cells of a high molecular weight multimeric complex identified using photoactivable amino acids. The hormone-induced recruitment of exogenous TSPO in this complex was found to parallel the increased presence of 7-azi-5alpha-cholestan-3beta-ol in the samples. Co-expression of Tspo, Pap7, PkarIalpha, and Star genes resulted in the stimulation of steroid formation in both steroidogenic MA-10 and non-steroidogenic COS-F2-130 cells that were engineered to metabolize cholesterol. Disruption of these protein-protein interactions and specifically the PKARIalpha-PAP7 and PAP7-TSPO interactions, using PAP7 mutants where the N0 area homologous to dual A-kinase-anchoring protein-1 or the acyl-CoA signature motif were deleted or using the peptide Ht31 known to disrupt the anchoring of PKA, inhibited both basal and hormone-induced steroidogenesis. These results suggest that the initiation of cAMP-induced protein-protein interactions results in the formation of a multivalent scaffold in the outer mitochondrial membrane that mediates the effect of hormones on mitochondrial cholesterol transport and steroidogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.