Abstract

Tip-based electron beam induced deposition is performed using field emission of low-energy electrons from the tip of an active (i.e., self-sensing and self-actuating) atomic force microscope cantilever inside a scanning electron microscope. By using the active cantilever for feature placement and metrology combined with fast switching between field-emission and noncontact imaging mode, high placement accuracy and time-efficient, precise 3D measurement of the deposits are enabled. First results on the effect of electron energy and exposure dose on the growth rates and dimensions of the deposits are presented, and the potential to increase spatial resolution due to the enhanced localization of the dissociation reactions induced by the low-energy electrons is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.