Abstract
CaO-CaCO3 thermochemical energy storage is a promising technology for solar energy utilization and storage. Alkaline papermaking waste (APW) from paper mills, which is mainly composed of CaCO3. Herein, TiO2/MnFe2O4 co-modified APW was synthesized. The energy storage capacity of TiO2/MnFe2O4 co-modified APW was studied during CaO-CaCO3 thermochemical energy storage cycles in a duel fixed bed reactor. TiO2/MnFe2O4 co-modified APW mainly consists of CaO, MgO, CaTiO3, CaMnO3, and Ca2Fe2O5. The introductions of TiO2 and MnFe2O4 significantly improve the cyclic stability and optical absorption property of APW in 30 cycles. The co-modified APW (the mass ratio for CaO:TiO2:MnFe2O4 = 100:5:5) possesses high sintering resistance, energy storage, and optical absorption capacities in 30 cycles. The energy storage conversion and capacity of the co-modified APW are 0.72 and 2288.57 kJ/kg after 30 cycles, respectively. The optical absorptance of the co-modified APW reaches 49%, which is 9.25 times as high as that of APW. CaTiO3 and CaMnO3 effectively mitigate the sintering of CaO grains. CaMnO3 and Ca2Fe2O5 significantly increase the optical absorptance of APW. The co-modified APW possesses stronger basicity and more oxygen vacancies, which is favourable for the carbonation reaction. Thus, TiO2/MnFe2O4 co-modified APW is a good energy storage material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.