Abstract

Time dependent problems in Partial Differential Equations (PDEs) are often solved by the Method Of Lines (MOL). For linear parabolic PDEs, the exact solution of the resulting system of first order Ordinary Differential Equations (ODEs) satisfies a recurrence relation involving the matrix exponential function. In this paper, we consider the development of a fourth order rational approximant to the matrix exponential function possessing real and distinct poles which, consequently, readily admits a partial fraction expansion, thereby allowing the distribution of the work in solving the corresponding linear algebraic systems in essentially Backward Euler-like solves on concurrent processors. The resulting parallel algorithm possesses appropriate stability properties, and is implemented on various parabolic PDEs from the literature including the forced heat equation and the advection-diffusion equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.