Abstract
Mathematical modeling of mass or heat transfer in solids involves Fick’s law of mass transfer or Fourier’s law of heat conduction. Engineers are interested in the distribution of heat or concentration across the slab or the material in which the experiment is performed. This process is usually time varying and eventually reaches a steady state. This process is represented by parabolic partial differential equations with known initial conditions and boundary conditions at two ends. Both linear and nonlinear parabolic partial differential equations will be discussed in this chapter. We will present semianalytical solutions for linear parabolic partial differential equations and numerical solutions for nonlinear parabolic partial differential equations based on the numerical method of lines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.