Abstract

Abstract In the present analysis, we have analyzed the three-dimensional flow of an electromagnetohydrodynamic copper–aluminum/water hybrid nanofluid flow on a Riga plate. The heat and mass flux model proposed by Cattaneo-Christov is deliberated here. Thermal radiation, thermophoretic diffusion, Brownian motion, and chemical reaction phenomena are considered in analyzing the flow problem. Thermal convective, mass convective, and velocity slip conditions are adapted in this analysis. Suitable resemblance variables are implemented for the conversion of the model equations to dimension-free form. The homotopy analysis method is adopted to solve the modeled equations. The obtained results show that the velocity profiles are reduced with an increasing estimation of the slip factors. Additionally, the nanoparticles’ concentration and the temperature of the hybrid nanofluid increase with higher values of thermal and solutal Biot numbers. The Nusselt number is increased with an increase in the radiation factor and thermal Biot number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.