Abstract

Long series time forecasting has become a popular research direction in recent years, due to the ability to predict weather changes, traffic conditions and so on. This paper provides a comprehensive discussion of long series time forecasting techniques and their applications, using the Informer algorithm model as a framework. Specifically, we examine sequential time prediction models published in the last two years, including the tightly coupled convolutional transformer (TCCT) algorithm, Autoformer algorithm, FEDformer algorithm, Pyraformer algorithm, and Triformer algorithm. Researchers have made significant improvements to the attention mechanism and Informer algorithm model architecture in these different neural network models, resulting in recent approaches such as wavelet enhancement structure, auto-correlation mechanism, and depth decomposition architecture. In addition to the above, attention algorithms and many models show potential and possibility in mechanical vibration prediction. In recent state-of-the-art studies, researchers have used the Informer algorithm model as an experimental control, and it can be seen that the algorithm model itself has research value. The informer algorithm model performs relatively well on various data sets and has become a more typical algorithm model for time series forecasting, and its model value is worthy of in-depth exploration and research. This paper discusses the structures and innovations of five representative models, including Informer, and reviews the performance of different neural network structures. The advantages and disadvantages of each model are discussed and compared, and finally, the future research direction of long series time forecasting is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.