Abstract
We have studied neural networks as models for time series forecasting, and our research compares the Box-Jenkins method against the neural network method for long and short term memory series. Our work was inspired by previously published works that yielded inconsistent results about comparative performance. We have since experimented with 16 time series of differing complexity using neural networks. The performance of the neural networks is compared with that of the Box-Jenkins method. Our experiments indicate that for time series with long memory, both methods produced comparable results. However, for series with short memory, neural networks outperformed the Box-Jenkins model. Because neural networks can be easily built for multiple-step-ahead forecasting, they may present a better long term forecast model than the Box-Jenkins method. We discussed the representation ability, the model building process and the applicability of the neural net approach. Neural networks appear to provide a promising alternative for time series forecasting. INFORMS Journal on Computing, ISSN 1091-9856, was published as ORSA Journal on Computing from 1989 to 1995 under ISSN 0899-1499.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have