Abstract
Abstract The formulation of a kinetic model for a complex reaction network typically yields reaction rates which vary over orders of magnitude. This results in time scale separation that makes the model inherently stiff. In this work, a graph-theoretic framework is developed for time scale decomposition of complex reaction networks to separate the slow and fast time scales, and to identify pseudo-species that evolve only in the slow time scale. The reaction network is represented using a directed bi-partite graph and cycles that correspond to closed walks are used to identify interactions between species participating in fast/equilibrated reactions. Subsequently, an algorithm which connects the cycles to form the pseudo-species is utilized to eliminate the fast rate terms. These pseudo-species are used to formulate reduced, non-stiff kinetic models of the reaction system. Two reaction systems are considered to show the efficacy of this framework in the context of thermochemical and biochemical processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.