Abstract

The viscous Moore-Greitzer equation modeling the airflow through the compression system in turbomachines, such as a jet engine, is derived using a scaled Navier-Stokes equation. The method utilizes a separation of scale argument based on the different spatial scales in the engine and the different time scales in the flow. The pitch and size of the rotor-stator pair of blades provides a small parameter, which is the size of the local cell. The motion of the stator and rotor blades in the compressor produces a very turbulent flow on a fast time scale. The leading order equation, for the fast time and local scales, describes this turbulent flow. The next order equations produce an axisymmetric swirl and a flow pattern analogous to Rayleigh-Bénard convection rolls in Rayleigh-Bénard convection. On a much larger spatial scale and a slower time scale, there exist modulations of the flow including instabilities called surge and stall. A higher order equation, in the small parameter, describes these global flow modulations, when averaged over the small (local) spatial scales, the fast time scale, and the time scale of the vortex rotations. Thus a more general system of spatially global, slow time equations is obtained. This system can be solved numerically without any approximations. The viscous Moore-Greitzer equation is obtained when small inertial terms are dropped from these slow time, spatially global equations averaged once more in the axial direction. The new equations are simulated with two different simplifying assumptions and the results are compared with simulations of the viscous Moore-Greitzer equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.