Abstract
In this paper, a semi-implicit time integration scheme has been developed for a damage-coupled constitutive model to characterize the mechanical behavior of 63Sn-37Pb solder material under thermo-mechanical fatigue (TMF) loading. The scheme is developed to provide an efficient numerical procedure of integration and iteration for calculating stress and other associated state variables within a strain-driven format. In particular, a novel Newton-Raphson iteration algorithm for the damage coupled constitutive material model involving von Mises viscoplastic potential function with nonlinear mixed hardening is formulated. An algorithmic tangent stiffness tensor is derived and the model is implemented numerically into a commercial finite element (FE) code ABAQUS through its user-defined material subroutine. Several numerical simulations are conducted for validation of the proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have