Abstract

The basic relations of geometrical optics for the case of an isotropic, time-dependent medium are derived from Fermat’s principle. The time-dependent theory is applied by discussing the Debye-Sears effect and the frequency fluctuations in a plane light wave induced by atmospheric turbulence and a steady cross wind. In the former case it is shown that the Brillouin scattering relation Δω = VΔk holds in the geometrical optics limit where V is the sound velocity, while in the latter case we find, using a method due to Tatarski, that the fluctuations in frequency are of the order of a few kilohertz under the most extreme conditions of turbulence, wind speed, and range. The intensity law of geometrical optics, Iσ = constant, is generalized to read Iσ/ν2 = constant, where ν is the frequency of the light wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.