Abstract
Rain erosion is one of the most detrimental factors contributing to wind turbine blade (WTB) coating fatigue damage especially for utility-scale wind turbines (WTs). To prevent rain erosion induced WTB coating fatigue damage, this paper proposes a deep reinforcement learning (DRL)-based optimization method for finding the optimal rotor speed under different rain intensities and wind speeds. First, an efficient physics-based model for predicting WTB coating fatigue damage considering the comprehensive blade coating fatigue mechanism, rain intensity distribution, and wind speed distribution is presented. Then, a WT rotor speed design optimization problem is constructed to search for the optimal rotor speed under different rain intensity and wind speed conditions. To address the challenge of optimizing the efficiency, the original design optimization problem is converted into a DRL-based design optimization model. A hybrid reward is proposed to enhance the DRL agent trained by a deep deterministic policy gradient algorithm. Finally, the proposed DRL-based design optimization method is utilized to guide the optimal rotor speed scheduling of a 5-MW WT under given wind speed and rain intensity conditions. The results show that the proposed method could extend the predicted WTB blade coating fatigue life by 2.55 times with a minor reduction in the energy yield (0.027%) compared to the original rotor speed schedule that only considers maximum power capture. The computational time of the proposed method is reduced significantly compared to that of the traditional gradient and evolutional design optimization methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.