Abstract
Snow presents more than just a uniformly white face. Beneath its surface a vivid blueness, the purity of which exceeds that of the bluest sky, may be seen. This subnivean blue light results from preferential absorption of red light by ice; multiple scattering by ice grains, which is not spectrally selective, merely serves to increase the path length that photons travel before reaching a given depth. Although snow is usually white on reflection, bubbly ice, which can be found in frozen waterfalls and icebergs, may not be. To a first approximation, bubbly ice is equivalent to snow with an effective grain size that increases with decreasing bubble volume fraction. Ice grains in snow are too small to give it a spectrally selective albedo, but the much larger effective grain sizes of bubbly ice can give it bluish-green hues of low purity on reflection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have