Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. Critically, what happens to these circuits if the cerebellum is not functioning optimally, or after stimulation, remains relatively unknown. We employed a between-subjects design with 74 participants total (38 female; M = 22.0years, SD = 3.45), applying anodal (n = 25), cathodal (n = 25), or sham (n = 24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly with cognitive regions of the cerebral cortex. This work suggests that when cerebellar outputs are degraded, in this case by tDCS, the cerebellum offloads its processing responsibility which encourages more cortical regions to engage to compensate for the degraded cerebellar output. This results in in differences in cortical activation patterns and performance deficits. These results might inform and update existing compensatory models, which focus primarily on the cortex, to include the cerebellum as a vital structure involved in the scaffolding of cortical processing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have