Abstract
Time crystals form when arbitrary physical states of a periodically driven system spontaneously break discrete time-translation symmetry. We introduce one-dimensional time-crystalline topological superconductors, for which time-translation symmetry breaking and topological physics intertwine-yielding anomalous Floquet Majorana modes that are not possible in free-fermion systems. Such a phase exhibits a bulk magnetization that returns to its original form after two drive periods, together with Majorana end modes that recover their initial form only after four drive periods. We propose experimental implementations and detection schemes for this new state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.