Abstract
HIV-1-associated neurocognitive disorders (HAND) afflict up to 50% of HIV-1+ individuals, despite the effectiveness of combination antiretroviral therapy (CART) in reducing the prevalence of more severe neurocognitive impairment. Alterations in brainstem auditory evoked potentials (BAEP), a measure of temporal processing, are one of the earliest neurological abnormalities of HIV-1-positive individuals. Prepulse inhibition (PPI) of the auditory startle response (ASR), a measure of sensorimotor gating, was studied in HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes. Ovariectomized female Fischer HIV-1 Tg and control rats (ns = 41-42) were tested for PPI at three test periods, with at least 2months separating each test period, using auditory and visual prepulses, an auditory startle stimulus, and interstimulus intervals (ISI) ranging from 0 to 4000msec. Auditory and visual prepulse trial blocks were presented in counterbalanced order. For both auditory and visual prepulses, HIV-1 Tg animals exhibited a flatter ISI function, which did not sharpen with age, as it did in controls. Over time, auditory prepulses precipitated a temporal shift in peak inhibition in HIV-1 Tg animals relative to controls, whereas with visual prepulses, both groups displayed peak inhibition at the 40msec ISI. A lack of perceptual sharpening with age and a relative insensitivity to the temporal dimension of sensorimotor gating are evident in the HIV-1 Tg rat prior to clinical signs of wasting. Deficits in sensorimotor gating may not only provide an early subtle diagnostic marker of HAND, but may also afford a key target for development of potential therapeutics.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have