Abstract

Cocaine abuse in HIV patients accelerates the progression and severity of neuropathology, motor impairment and cognitive dysfunction compared to non-drug using HIV patients. Cocaine and HIV interact with the dopamine transporter (DAT); however, the effect of their interaction on DAT binding remains understudied. The present study compared the dose-response functions for intravenous self-administration of cocaine and heroin between male HIV-1 transgenic (HIV-1 Tg) and Fischer 344 rats. The cocaine and heroin dose-response functions exhibit an inverted U-shape for both HIV-1 Tg and F344 rats. For cocaine, the number of infusions for each dose on the ascending limb was greater for HIV-1 Tg versus F344 rats. No significant changes in the heroin dose-response function were observed in HIV-1 Tg animals. Following the conclusion of self-administration experiments, DAT binding was assessed in striatal membranes. Saturation binding of the cocaine analog [(125)I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125)I]RTI-55) in rat striatal membranes resulted in binding curves that were best fit to a two-site binding model, allowing for calculation of dissociation constant (Kd) and binding density (Bmax) values that correspond to high- and low-affinity DAT binding sites. Control HIV-1 Tg rats exhibited a significantly greater affinity (i.e., decrease in Kd value) in the low-affinity DAT binding site compared to control F344 rats. Furthermore, cocaine self-administration in HIV-1 Tg rats increased low-affinity Kd (i.e., decreased affinity) compared to levels observed in control F344 rats. Cocaine also increased low-affinity Bmax in HIV-1 Tg rats as compared to controls, indicating an increase in the number of low-affinity DAT binding sites. F344 rats did not exhibit any change in high- or low-affinity Kd or Bmax values following cocaine or heroin self-administration. The increase in DAT affinity in cocaine HIV-1 Tg rats is consistent with the leftward shift of the ascending limb of the cocaine dose-response curve observed in HIV-1 Tg vs. F344 rats, and has major implications for the function of cocaine binding to DAT in HIV patients. The absence of HIV-related changes in heroin intake are likely due to less dopaminergic involvement in the mediation of heroin reward, further emphasizing the preferential influence of HIV on dopamine-related behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call